
1

A Holistic view of
Improving Website
Performance

Rene Churchill - Astute Computing

rene@astutecomputing.com

2

What does "Performance" mean?

1. Client side - How fast does the site render in MY personal
browser.

2. Server side - How many clients can I support with my
server?

vs.

Website performance can be viewed from many different
perspectives.

This talk will cover some of the things you can do as a
webmaster to improve how quickly your site renders on
your users machines.

This means only making changes on the server since you
do not have control over the end-users browser settings.

3

Why should I give a gnats arse?

Potentially a MAJOR impact on site revenue:

"Experiments at Amazon.com showed that every 100-ms
increase in the page load time decreased sales by 1
percent, while similar work at Google revealed that a 500-
ms increase in the search results display time reduced
revenue by 20 percent."

IEEE Computer magazine, Kohavi and Longbotham - 2007
http://exp-platform.com/Documents/IEEEComputer2007OnlineExperiments.pdf

4

Render Start vs Page Complete

Render Start - When the browser has enough information to
begin displaying the webpage.
• Requires CSS, JavaScript from <head> and a couple of
images.

• User starts to see something in their browser
• Reassures the user that their information is coming.
• JavaScript NOT executing yet.

Render start vs Page Complete, which is more important
depends on your website.

A table of statistics would care about render start because
the user can start reviewing the data before the page is
done.

A e-commerce site may care more for page complete
because that is when the "Buy This" buttons appear.

5

Render Start vs Page Complete
Page Complete - When everything visible has been loaded.
• User has all the information they requested.
• Buttons/forms active and clickable
• This is when the onLoad() event fires.
• JavaScript may still be loading elements in the
background.

At this point people can start interacting with the webpage
(in theory)

6

Render Start vs Page Complete
Page Really Complete - When everything has been loaded.
• All of the widgets have loaded
• All of the initial AJAX calls have been made
• Facebook, Google Analytics, AddThis, Google AdWords,
etc., etc., etc.

Some websites get to be very frustrating because the
browser locks up when onLoad() fires because SO much
JavaScript is launched.

7

Steps to resolving an HTML request

1. DNS lookup
2. Initialize Connection
3. Load & Compile PHP
4. Execute PHP & Database Queries
5. Return resulting HTML
6. Fetch CSS, JavaScript and Images
7. Render page
8. Execute JavaScript
9. Profit!

8

Waterfall view of Webpage Performance

http://webpagetest.org/

This is a waterfall graph from the site WebPageTest.org,
which is a huge help in understanding the entirety of how
long it takes your webpage to load.

We'll be covering the information shown on this graph in
detail throughout this presentation.

9

1. Fast DNS lookups

DNS - Domain Name System
Converts textual domain names to IP addresses

AstuteComputing.com -> 74.208.96.76

50-150ms per query

One DNS query per unique domain name used

Limit the total number of domains

Not much you can really do to speed up a DNS server.

They're amazingly fast already, almost 100% of the time
involved in the query is network lag between your browser
and the DNS servers.

Keep in mind that every widget that you add to your
webpage adds at least one more domain
name. AddThis.com, Facebook like buttons, Google
Analytics, etc., etc., etc.

DNS queries are cached by the browser but the cache
doesn't help on that all-important first pageview.

10

Waterfall view of Webpage Performance

http://webpagetest.org/

11

2. Speed up that initial connection

Initial connection will be at best 2x network latency

Initial socket handshake requires ACK

Avoid 301/302 redirects
For example: foobar.com -> www.foobar.com

Have enough spare servers/threads configured
6x number of simultaneous users recommended

Use CDNs to reduce network latency if affordable

Socket communication requires an acknowledgement
before the connection is established, so a minimum of 2x
the network latency.

Not all that much that you can do to speed this up. Content
Delivery Networks can help reduce the network lag, but not
many of us are in a financial position to take advantage of
this.

Avoid redirects, especially on that all-important home
page. Yes, it makes handling your cookies easier, but it
can easily add a half-second to your first and most
important pageview. Redirects add another DNS lookup
and another connection request if the domain name
changes.
CDN - Content Delivery Network. A collection of servers
placed around the country. DNS tricks are employed so
that the server closed to the user is picked.

12

Better User Experience

Some things you can do to improve your users experience:

• Register variations on your domain name - plurals, with
and without dashes, etc. Do not redirect the user on the
first page.

• Analytic programs can handle multiple domain names
• Use wildcard cookies to avoid domain name redirects:

setcookie($name, $value, $time, '/', '.example.com');

• Put your preferred domain name into the Canonical link to
avoid Google penalties for duplicate content:
<link rel="canonical" href="http://www.foo.com/bar.php" />

Variations on the domain name doesn't help performance
wise, but it's a nice touch and avoids the misspelling
squatters.

13

Redirects & Spare Servers/Threads

IE8 allows up to 6 simultaneous connections per domain name

Here you can see the cost of redirecting to a specific
version of the domain name. It includes another DNS
lookup and a second socket connection.

Also notice that IE8 allows up to 6 simultanious
connections, each taking a thread/server.

14

3. Load & Compile PHP

• Server side limitations - Disk I/O to load each page
SSDs dropping in price - 0.1ms access time vs 5-10ms

• Do not include/require unnecessary code

Frameworks - More harm than help?

$foo = new Widget(); // What PHP runs?
• Use a PHP cache like APC

http://php.net/manual/en/book.apc.php

The controversial item on this page is the question about
frameworks.

When that constructor fires, how much is actually being
included/compiled/run? How do you know?

15

4. Execute PHP & Database Queries

Steve Souders:"For years when developers started focusing
on the performance of their websites, they would start on the
back end, optimizing C++ code or database queries. Then we
discovered that about 10% or 20% of the overall page load
time was spent on the back end. So if you cut that in half, you
only improve things 5%, maybe 10%. In many cases, you can
reduce the back end time to zero and most users won't
notice."

Nhttp://radar.oreilly.com/2011/06/steve-souders-optimization-
mobile-http-archive.html

Since we're a programming group, most of what we talk
about is here in this section.

And we're pretty good at it, to the point where it's not a
major portion of the problem.

16

Why Back-end optimization doesn't cut it

Pardon the sloppy drawing, it's hard to draw nice curves
with a trackball

Even if I eliminated the back-end PHP time to generate this
page, the vast majority of the time that the user is kept
waiting is NOT involved in PHP.

17

Other options for load/execute PHP

• memcache - http://memcached.org/
• Varnish Cache Server - http://www.varnish-cache.org/
• MySQL query caching
• nginX - http://nginx.org/ (less memory usage)
• php-fpm - http://php-fpm.org/ (less memory usage)
• Many, many others

18

What really needs to be Dynamic?

• Use PHP (or any other language) and cron to generate
static HTML pages on a schedule

• Use AJAX to pull in user specific content after page has
loaded.

User specific content could be the contents of their
shopping cart, their username, etc. All of the little
personalization touches could be done via AJAX.

19

5. Return the resulting HTML

Enable gzip in Apache - Internet vs Intranet - gzip helps most
in low-bandwidth environments

/etc/httpd/conf/httpd.conf
LoadModule deflate_module modules/mod_deflate.so
...
AddOutputFilterByType DEFLATE text/html text/plain text/xml
...
<VirtualHost ...>
SetOutputFilter DEFLATE

</VirtualHost>

Balance the bandwidth reduction via gzip against the CPU
time used to compress things. If the server is heavily
loaded, the CPU time may be more valuable than the
bandwidth.

20

5. Return the resulting HTML

Every modern browser supports partial page rendering so:
• Flush output buffer early - flush(), after </head>, after the
fold, after writing a major div/table of the page, etc.

<html>
<head>
... stuff ...

</head>
<body class="body_foobar">
<?php
flush();

?>

Note, flush() conflicts with gzip.

Because gzip encodes data in chunks and is implemented
as an output filter, flush() cannot arbitrarily push partial
blocks out the pipe.

So if the HTML that you generate is fairly small, skip gzip
and see if flush() makes more of a different in pageload
time.

Personally I get better results from gzip/deflate than flush()

21

Example of Flush() helping

http://webpagetest.org/

22

Stylesheets reduce HTML size
• Use CSS to avoid repeating style information
<table cellpadding=5 cellspacing=0 border=1
bordercolor="#ff0000" bgcolor="#009900"
width="90%">

vs.
<table class="gross">

• Shorten CSS tags
<p class="a23r7">

vs.
<p class="paragraph_style_alpha23_rev7">

23

Why nested
tables are bad:

Example stolen from a great
presentation by Bill Merikallio &
Adam
Pratt: http://www.hotdesign.co
m/
seybold/15inteadofthis.html

24

25

6. Fetch CSS, JavaScript, Images

This is all the "extra" stuff that your page needs.

This is where your largest speed gains will be found.

Everything we've discussed so far is minor. The major
gains are right here.

All of the extra stuff listed on your page. Any external
reference that you make in a page gets pulled from the
servers during this step.

26

Image Overload

Test done with IE 7, 2 connections allowed

27

Increase Parallel Downloads

Older browsers restricted to 2 connections / hostname, 6 total

Newer browsers allow 4 connections per hostname,
IE 8 & 9 allow 6.

Use multiple domain names:
• photo.example.com
• images.example.com
• etc.

Note that using multiple domain names does increase the
DNS resolution time, but it's a tradeoff between the number
of downloads that you can simultaniously get rolling.

28

Parallel Downloads

Reusing the image here.

29

Reduce the number of additional elements

Why bother, aren't they all going to get cached anyhow?

Cache does NOT help on the first page!

The VAST majority of users to your website are NOT going
to have anything in their cache for that all-important first-
page.

Google Analytics released a newsletter recently showing
that the average bounce rate over all the sites they analyze
(that opted into sharing data) was 47%.

30

Reduce the number of additional elements

• Combine CSS into a single file

• Combine JavaScript into a single file

• Minify to remove white space and comments

Note that combining all of your javascript into a single file
means ALL of your JavaScript, even those libraries that
you're using from somebody else.

This can cause conflicts when you're using something like
GoogleMaps and they change/improve their libraries.

Also, this can cause havoc when many people are
changing the website because you're all making changes to
the same file. So save this step until the end, just before
the site is pushed live.

31

CSS Sprites

Blast from the past.
Sprites used heavily in old 8bit video games.

32

CSS Sprites

Many images can be combined into a single larger image.

• Menu tabs
• Rollover images
• Ratings (stars, dots, whatever)
• Thumbs up
• Thumbs down
• Rounded corners
• Buttons
• etc.

This one larger image results in a single HTTP request
rather than a horde of them.

Since bandwidth is less of an issue these days, the larger
image size is less of a problem than the multiple requests.

33

CSS Sprites

CSS cannot edit/crop images directly

However, background images CAN be shifted.

So...

<style>
img.blue_circle {
background: url('/images/circles.png') 0px -90px no-repeat;

}
</style>

This one larger image results in a single HTTP request
rather than a horde of them.

Since bandwidth is less of an issue these days, the larger
image size is less of a problem than the multiple requests.

34

CSS Sprites

This trick also works well with other effects:

....

<style>
a#buyme {
background: url('sprite.png') 0px 0px no-repeat;

}
a#buyme:hover {
background: url('sprite.png') 0px -50px no-repeat;

}
a#buyme:visited {
background: url('sprite.png') 0px -100px no-repeat;

}

35

CSS Sprites

Generating/Updating sprite image is a pain

A Solution: HTML Table & Screenshot

Borders help to show boundaries

Obviously, creating these sprite images can be quite time-
consuming, so this step is often best left until the site is
almost ready to go live, after the customer has signed off
on the design look & feel.

Hint: To make creating these a little easier, create an
HTML table with all of the image in it and then do a
screenshot.

If you do the table trick try adding borders, it'll make later
edits much easier and you can just crop out the border
when you are positioning the sprite.

36

Data URL - Encode images into your HTML

Becomes:

<img src="
ywAAAAAMAAwAAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsa
py
uvUUlvONmOZtfzgFzByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5l
Kh/DeuNcP5yLWGsEbtLiOSpa/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4
diinWGdkF8kjdfnycQZXZeYGejmJlZeGl9i2icVqaNVailT6F5iJ90m6m
vuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uisF81M1OIcR7lEewwcLp7tuN
NkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PHhhx4dbgYKAAA7">

http://tools.ietf.org/html/rfc2397

37

Data URL - Encode images into your HTML

Pros:
• No additional HTTP request required
• Bandwidth usually smaller problem than
network latency

Cons:
• Images cannot be cached
• Not supported in IE 6 & 7 (Workaround: Mime HTML:

http://www.phpied.com/mhtml-when-you-need-data-uris-in-ie7-and-under/)
• IE8 requires encoded data to be less than 32kb

38

More ways to reduce external elements

Don't use images in the first place.
Text nav buttons with the same CSS background image.

CSS with background images and text overlay to make menus

Lots of JavaScript dropdown menus scripts available that
make textual menus.

39

7. Render HTML

• CSS in <head>
• JavaScript at the bottom of the page
• Defer loading images below the fold so JavaScript
event onLoad() can fire.

http://developer.yahoo.com/yui/imageloader/

JavaScript blocks other downloads, so any external script
references in your header will block images from
downloading.

document.write() calls cannot be moved to the bottom of
the page, but they can be deferred.

40

8. Execute JavaScript

We have no control over which JavaScript engine is used.

Keep the gee-whiz factor under control.

Do frameworks really help? (Node.js, jQuery, etc.)

The end user gets to control which JavaScript engine is
used by their choice of browser. We could restrict the site
to a specific browser, but that's just slitting our own throats.

Keep the "Gee-Whiz" factor under control. Yes, that subtly
changing background gradient may be really cool, but does
it actually help move product?

Again I'm bringing up frameworks. I've seen major chunks
(like 250k worth) of JavaScript included in order to use one
or two 20-line JavaScript utility functions. There's no
reason to abuse bandwidth like that.

41

Apache settings - speed tweaks

/etc/httpd/conf/httpd.conf
KeepAlive On
MaxKeepAliveRequests 5000
KeepAliveTimeout 15

Keeping around lots of spare threads/server processes for
quick connections.

Don't resolve DNS, let post-processing analytic tool handle it

HostnameLookups Off

KeepAlive - tradeoff between server resources and browser
speed.

Recommend a minimum of 5-15 seconds, a maximum of a
little more than the average time spent on a page for your
site, but no more than 5 minutes.

On a high volume site, you may not be able to afford the
server resources to keep that many connections alive.

42

Expires Headers

Eliminates HTTP HEAD requests on subsequent pages to
check modification times.

/etc/httpd/conf/httpd.conf
LoadModule expires_module modules/mod_expires.so
...
<VirtualHost ...>
ExpiresActive On
ExpiresByType image/* "access plus 4 weeks"
ExpiresByType text/css "access plus 4 weeks"
ExpiresByType application/x-javascript A2592000
</VirtualHost>

The HEAD requests are done on subsequent page loads to
see if a page/image/file on the server has changed. Setting
the Expires header can eliminate these checks, speeding
up 2nd page load times.

43

Expires Headers

I'm not picking on FoundLine in particular here, their page
reload time is quite good, but they were the first site I could
find that wasn't using the Expires headers.

A 304 result means "Not Modified" in response to a HEAD
query.

44

I know this is pretty much unreadable, but here is a more
extreme example, smalldog.com.

Lots of graphics all of which haven't changed. Only the
white lines are changed elements.

45

Additional Reading

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/yslow/

Additional Tools

http://webpagetest.org
http://pagespeed.googlelabs.com/
http://spritegen.website-performance.org/ - CSS Sprite generator

This presentation published at:

https://docs.google.com/present/view?id=ddd3c4t5_16hh2k9wgj

